LAPLACE TRANSFORM

Class: II B.Sc Maths

Subject: Vector Calculus and Laplace Transform

Subject Code: 22SCCMM7

Ms. R. VANAJA

Assistant Professor

PG & Research Department of Mathematics

Shrimati Indira Gandhi College

Trichy.

LAPLACE TRANSFORM

Let f(t) be a function of t defined for all $t \ge 0$.then the Laplace transform of f(t), denoted by L[f(t)] is defined by $L[f(t)] = \int_0^\infty e^{-st} f(t) dt$ Provided that the integral exists, "s" is a parameter which may be real or complex. Clearly L[f(t)] is a function of s and is briefly written as F(s) (i.e.) L[f(t)] = F(s)

PIECEWISE CONTINUOUS FUNCTION

A function f(t) is said to be piecewise continuous is an interval $a \le t \le b$, if the interval can be sub divided into a finite number of intervals in each of which the function is continuous and has finite right and left hand limits.

EXPONENTIAL ORDER

A function f(t) is said to be exponential order if $\lim_{t\to\infty} e^{-st} f(t)$ is a finite quantity, where s > 0 (exists).

PROPERTIES

- $L[af(t) \pm bg(t)] = aL[f(t)] \pm bL[g(t)]$, where a and b are constants.
- If L[f(t)] = F(s), then $L[f(at)] = \frac{1}{a} F(\frac{s}{a})$; a > 0
- If L[f(t)] = F(s), then
 - i) $L[e^{-at}f(t)] = F(s+a)$ and ii) $L[e^{at}f(t)] = F(s-a)$
- L[f'(t)] = sL[f(t)] f(0)
- $L[f^n(t)] = s^n L[f(t)] s^{n-1}f(0) s^{n-2}f'(0) \cdots s^{n-3}f''(0) \cdots f^{n-1}(0)$
- IfL[f(t)] = F(s), then $L\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$
- IfL[f(t)] = F(s), then
 - i) $L\left[tf(t)\right] = -\frac{d}{ds}F(s)$ and ii) $L\left[t^nf(t)\right] = (-1)^n\frac{d^n}{ds^n}F(s)$

STANDARD FUNCTIONS

$$L(1) = \frac{1}{s}$$

$$L(t) = \frac{1}{s^2}$$

$$L(t^n) = \frac{\Gamma(n+1)}{s^{n+1}}$$

•
$$L(e^{at}) = \frac{1}{s-a}, s > a$$

•
$$L(e^{-at}) = \frac{1}{s+a}, s > a$$

•
$$L(\sin at) = \frac{a}{s^2 + a^2}$$
, $s > |a|$

•
$$L(\cos at) = \frac{s}{s^2 + a^2}$$
, $s > |a|$

•
$$L(\sinh at) = \frac{a}{s^2 - a^2}$$
, $s > |a|$

•
$$L(\cosh at) = \frac{s}{s^2 - a^2}$$
, $s > |a|$

PERIODIC FUNCTIONS

Definition: A function f(t) is said to be periodic if (t + T) = f(t) for all values of t and for certain values of T. The smallest value of T for which f(t + T) = f(t) for all t is called **periodic function**.

Example:

 $sint = sin(t + 2\pi) = sin(t + 4\pi) \cdots$

 \therefore sint is periodic function with period 2π .

Let f(t) be a periodic function with period T.

Then
$$L(f(t) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t)$$

Example:

Find the Laplace transform of
$$f(t) = \begin{cases} \sin \omega t, 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}, f\left(t + \frac{2\pi}{\omega}\right) = f(t)$$

Solution:

$$L(f(t)) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \int_0^{\frac{2\pi}{\omega}} e^{-st} \sin \omega t dt$$

$$= \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[\frac{e^{-st}}{s^2 + \omega^2} (-s \sin \omega t - \omega \cos \omega t) \right]_0^{\frac{\pi}{\omega}}$$

$$= \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left\{ \frac{e^{-s\frac{\pi}{\omega}}}{s^2 + \omega^2} (-s \sin \pi - \omega \cos \pi) + \frac{\omega}{s^2 + \omega^2} \right\} = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[\frac{e^{-s\frac{\pi}{\omega}} \omega + \omega}{s^2 + \omega^2} \right]$$

$$= \frac{1}{1^2 - \left(e^{-\frac{\pi s}{\omega}}\right)^2} \left[\frac{\omega \left(e^{-s\frac{\pi}{\omega}} + 1\right)}{s^2 + \omega^2} \right] = \frac{1}{\left(1 + e^{-\frac{\pi s}{\omega}}\right) \left(1 - e^{-\frac{\pi s}{\omega}}\right)} \left[\frac{\omega \left(e^{-s\frac{\pi}{\omega}} + 1\right)}{s^2 + \omega^2} \right]$$

$$= \frac{\omega}{\left(1 - e^{-\frac{\pi s}{\omega}}\right) \left(s^2 + \omega^2\right)}$$

INVERSE LAPLACE TRANSFORM

Definition

If L[f(t)] = F(s), then f(t) is called an inverse Laplace transform of F(s) and it is denoted by $f(t) = L^{-1}[F(s)]$, where L^{-1} is called the inverse Laplace transform operator.

L(f(t))	F(s)
$L(1) = \frac{1}{s}$	$L^{-1}\left(\frac{1}{s}\right) = 1$
$L(t) = \frac{1}{s^2}$	$L^{-1}\left(\frac{1}{s^2}\right) = t$
$L(t^n) = \frac{n!}{s^{n+1}}, if \ n \ is \ an \ integer$	$L^{-1}\left(\frac{n!}{s^{n+1}}\right) = t^n$ $L^{-1}\left(\frac{1}{s^{n+1}}\right) = \frac{t^n}{n!}$

L(f(t))	F(s)
$L(e^{at}) = \frac{1}{s - a}$	$L^{-1}\left(\frac{1}{s-a}\right) = e^{at}$
$L(e^{-at}) = \frac{1}{s+a}$	$L^{-1}\left(\frac{1}{s+a}\right) = e^{-at}$
$L(\sin at) = \frac{a}{s^2 + a^2}$	$L^{-1}\left(\frac{a}{s^2 + a^2}\right) = \sin at$
$L(\cos at) = \frac{s}{s^2 + a^2}$	$L^{-1}\left(\frac{s}{s^2+a^2}\right) = \cos at$
$L(\sinh at) = \frac{a}{s^2 - a^2},$	$L^{-1}\left(\frac{a}{s^2 - a^2}\right) = \sinh at$
$L(\cosh at) = \frac{s}{s^2 - a^2}$	$L^{-1}\left(\frac{s}{s^2 - a^2}\right) = \cosh at$

PROPERTIES

$$L(f(t)) = F(s)$$
 and $L(g(t)) = G(s)$, then

1.
$$L^{-1}(aF(s) \pm bG(s)) = aL^{-1}(F(s)) \pm bL^{-1}(G(s))$$
, where a and b are constants.

2.
$$L^{-1}[F(s + a) = e^{at}L^{-1}[F(s)]]$$

$$3.L^{-1}[F(s-a)=e^{-at}L^{-1}[F(s)]]$$

4. If
$$L^{-1}(F(s)) = f(t)$$
 and $f(0) = 0$ then $L^{-1}[sF(s)] = -\frac{d}{dt}L^{-1}F(s)$

5.
$$L^{-1}\left(\frac{F(s)}{s}\right) = \int_0^t L^{-1}(F(s)) ds$$

6.
$$L^{-1}(F(s)) = -\frac{1}{t} L^{-1}\left(\frac{d}{ds}F(s)\right)$$

7.
$$L^{-1}(F(s)) = tL^{-1}(\int_{s}^{\infty} F(s) ds)$$

Example:

Find
$$L^{-1}\left(\frac{1}{(s+1)(s+2)(s)}\right)$$

Solution:

$$\left(\frac{1}{(s+1)(s+2)(s)}\right) = \frac{A}{s+1} + \frac{B}{s+2} + \frac{c}{s}$$

$$1 = A(s+2)s + B(s+1)s + C(s+1)(s+2)$$

Put
$$s = -1, -2, 0$$
 then $A = -1, B = \frac{1}{2}$ and $C = \frac{1}{2}$

$$L^{-1}\left(\frac{1}{(s+1)(s+2)(s)}\right) = L^{-1}\left(\frac{-1}{s+1} + \frac{1/2}{s+2} + \frac{1/2}{s}\right)$$

$$= -L^{-1}\left(\frac{1}{s+1}\right) + \frac{1}{2}L^{-1}\left(\frac{1}{s+2}\right) + \frac{1}{2}L^{-1}\left(\frac{1}{s}\right)$$

$$=-e^{-t}+\frac{1}{2}e^{-2t}+\frac{1}{2}$$

